

650V 10A Intelligent Power Module

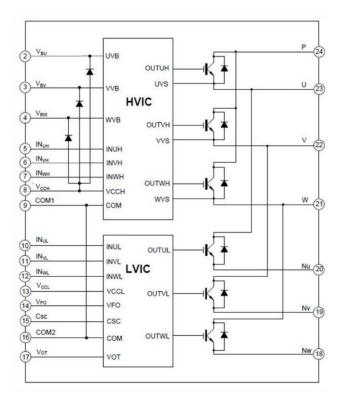
JM10Z07DL1

Features:

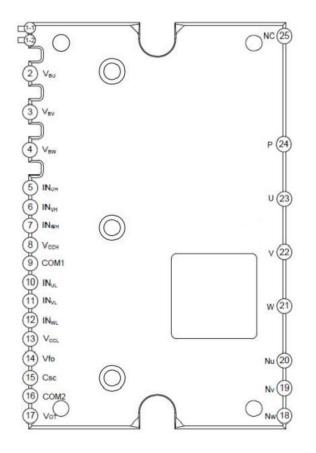
- 650V 10A Three-Phase IGBT inverter with control ICs inside
- Integrated OC SC protection & temperature output
- Very low thermal resistance
- High efficiency due to very low losses
- Integrated bootstrap diodes
- High reliability & strong SC withstand ability

DIP25

Applications:


- Home appliances
- Motor drives
- General inverter

Package parameters


Туре	Marking	Package	Packaging Method
JM10Z07DL1	JM10Z07DL1	DIP25	Tube

Internal Electrical Schematic

Pin Configuration

Pin Description

Pin	Name	Descriptions	
1-1	NC	No Connection	
1-2	NC	No Connection	
2	V_{BU}	U-phase high side floating IC supply voltage	
3	$V_{ m BV}$	V-phase high side floating IC supply voltage	
4	V _{BW}	W-phase high side floating IC supply voltage	
5	INuh	U-phase high side gate driver input	
6	INvh	V-phase high side gate driver input	
7	INwh	W-phase high side gate driver input	
8	Vcch	High side gate drive supply voltage	
9	COM1	Module common ground	
10	INUL	U-phase low side gate driver input	
11	INVL	V-phase low side gate driver input	
12	INWL	W-phase low side gate driver input	
13	Vccl	Low side gate drive supply voltage	
14	VFO	Fault Output	
15	Csc	External capacitor for short-circuit current detection input and low-pass filtering	
16	COM2	Module common ground	
17	Vot	Temperature output terminal	
18	Nw	W-phase DC negative terminal	
19	Nv	V-phase DC negative terminal	
20	Nu	U-phase DC negative terminal	
21	W	Output for W Phase	
22	V	Output for V Phase	
23	U	Output for U Phase	
24	P	Positive DC-Link Input	
25	NC	No Connection	

Absolute Maximum Ratings ($T_{vj}=25$ °C, unless otherwise noted)

Symbol	Parameter	Values	Unit		
Inverter Part					
$ m V_{PN}$	Supply voltage 450				
$V_{ ext{PN(surge)}}$	Supply voltage (surge)	500	V		
Vces	Collector – Emitter voltage	600	V		
Ic	Each IGBT collector current, $T_C = 25^{\circ}C$, $T_{vj} \le 150^{\circ}C$	10	A		
Іср	Each IGBT collector current (Peak) , T_C = 25°C , T_{vj} ≤ 150°C	20	A		
P_D	Power dissipation per 1 chip, T _C =25°C	45	W		
Control Pa	art				
Vcc	Control supply voltage	20	V		
V_{BS}	High-Side control bias voltage	20	V		
Vin	Input signal voltage	-0.3~Vcc+0.3	V		
V_{FO}	Fault output supply voltage	-0.3~V _{CC} +0.3	V		
Tvj	Operating junction temperature	-40 to 150	°C		
Тѕтс	Storage temperature range	-40 to 150	°C		
R _{thje} -IGBT	Single IGBT thermal resistance, junction-case	3.0	°C/V		
R _{thje} -FRD	Single FRD thermal resistance, junction-case	3.6	°C/V		
VISO	Isolation test voltage (1min, RMS, f = 60Hz)	1500	Vrms		

Absolute Maximum Ratings ($T_{vj}=25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Values			Unit
Symbol		Min.	Тур.	Max.	Onit
V _{PN}	Supply voltage	-	300	400	V
Vcc	Control supply voltage	13.2	-	20	V
V _{BS}	High side control voltage	13.0	-	20	V
Vно	High side driver output voltage	Vss	-	V _{BS}	V
VLO	Low side driver output voltage	Vss	-	Vcc	V

Electrical Characteristics (T_{vj} = 25 °C, unless otherwise note)

Inverter Part

Symbol	Parameter	Test condition	Values			Unit
			Min.	Тур.	Max.	UIII
V _{CEsat}	Collector – Emitter saturation voltage	$V_{CC}=V_{BS}=15V$	_	1.8	_	V
V CEsat	Consecutive Emiliary Surface volumes	$V_{IN}=5V$, $I_C=10A$	-	1.0	_	•
V_{F}	FRD forward voltage	$V_{IN}=0V$, $I_F=10A$	-	1.4	-	V
ton			-	553	-	ns
t_{r}			-	19	-	ns
t off	High side switching & recovery time		-	423	-	ns
$t_{ m f}$		$V_{PN} = 300V$	-	73	-	ns
t _{rr}		$V_{CC} = V_{BS} = 15V$	-	101	-	ns
ton	Low side switching & recovery time	$I_C = 10A$, $V_{IN} = 0V$ to $5V$ Inductive load	-	650	-	ns
t _r		1000	-	56	-	ns
$t_{ m off}$			_	533	-	ns
t_{f}			_	55	-	ns
t _{rr}			-	140	-	ns
Ices	Collector-Emitter leakage current	V _{CE} =600V	-	_	10	uA

Control Part

Symbol	Parameter	Test condition	Values			TI:4
			Min.	Тур.	Max.	Unit
I_{QCC}	Quiescent V _{CC} supply current	$V_{CC}=15V$, $V_{IN}=0V$	-	-	1.3	mA
I_{QBS}	Quiescent V _{BS} supply current	$V_{BS}=15V$, $V_{IN}=0V$	-	-	300	uA
VFOH		V_{SC} =0 V V_{FO} Circuit: $10k\Omega$ to $5V$	4.9	-	-	V
VFOL	Fault output voltage	V _{SC} =1V, I _{FO} =1mA	-	-	0.95	V
tfo	Fault output pulse width	Fault duration	40	-	200	us
$V_{\text{SC(ref)}}$	Short-circuit trip level	$V_{CC}=15V$	0.455	0.48	0.505	V
OTt	Over temperature protection trip	LVIC temperature	100	120	140	°C
OT_{rh}	Over temperature protection hysteresis	LVIC temperature Hysteresis	-	10	-	°C
		LVIC temperature=25°C	1.06	1.2	1.39	V
Vot	Temperature output	LVIC temperature=90°C	2.63	2.77	2.91	V
UV_{CCt}		Trip level	9.0	10.0	11.0	V
UV_{CCr}	Low side undervoltage protection	Reset level	10.0	11.0	12.0	V
UV_{BSt}		Trip level	9.0	10.0	11.0	V
UV_{BSr}	High side undervoltage protection	Reset level	10.0	11.0	12.0	V
Vih	On threshold voltage	A 1: 1	-	-	2.5	V
$V_{\rm IL}$	Off threshold voltage	Applied among inputs and COM	0.8	-	-	V

Temperature Output Function Description

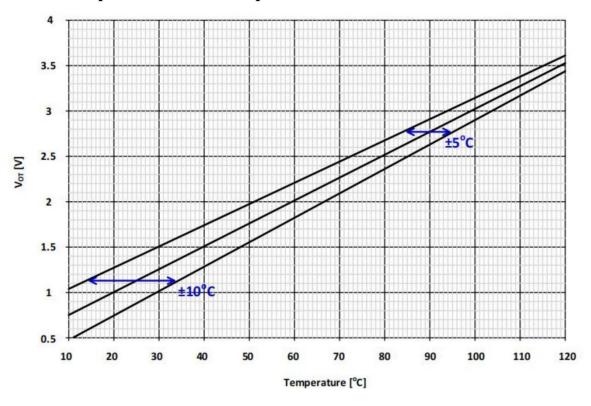


Figure 1. Vot temperature characteristics

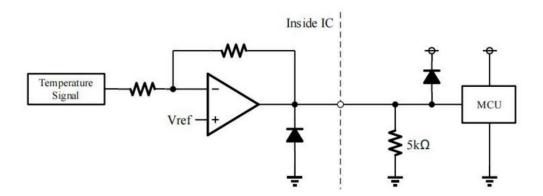


Figure 2. Vot output circuit

- (1) Connect $5k\Omega$ to VOT pin if temperature monitoring function is used, and then the internal OTP function is omitted. Leave the VOT pin open (no connect) if internal over-temperature shutdown function is used. However, the VOT is also operated, but with inferior accuracy.
- (2) In the case of using VOT with low voltage controller like 3.3V MCU, VOT output might exceed control supply voltage 3.3V when temperature rises excessively. If system use slow voltage controller, it is recommended to insert a clamp diode between control supply of the controller and VoT output for preventing over voltage destruction.

Short-Circuit Protection Function Description

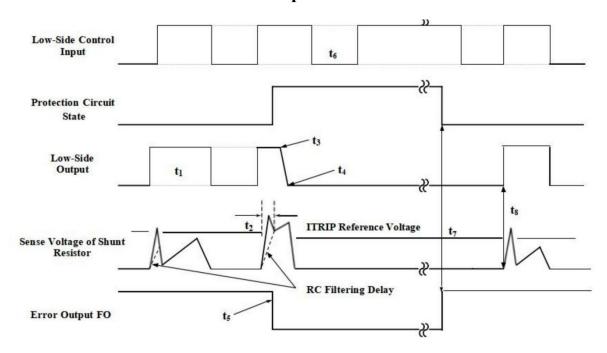


Figure 2. Short-circuit protection

t1 : Normal operation, Low-Side output.

t2: Short circuit current detection (ITRIP trigger).

(It is recommended to set RC time constant 1.5-2.0us so that IGBT shunt down within 2.0us when I_{TRIP} be triggered.) t3: All low-side outputs are hard interrupted.

t4: All low-side outputs turn off.

t5: FO outputs for tFO=40us (min).

t6: Input is low, outputs turn off.

t7: FO rise to high, but outputs don't turn on until input signal change low to high.

t8: Normal operation, outputs on.

Low-side Under-Voltage Protection Description

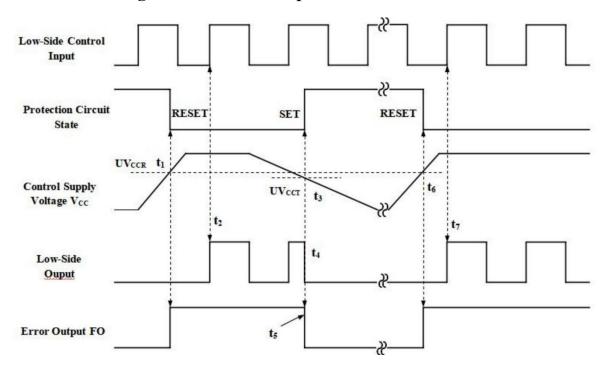
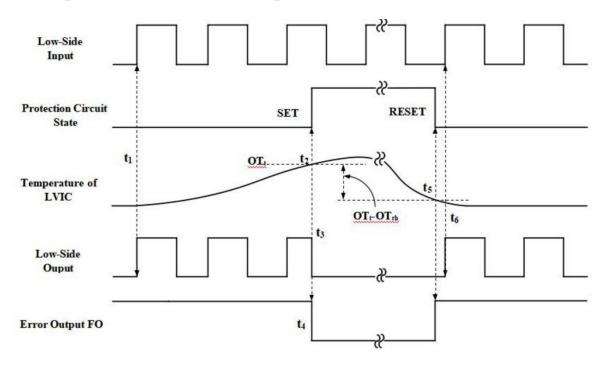
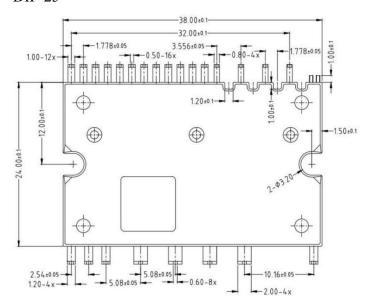


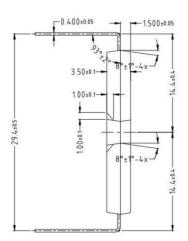
Figure 3. Under-voltage protection(low side)

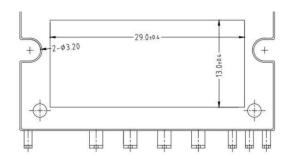
- t1: Control supply voltage V_{CC} exceeds under voltage reset level (UV_{CCR}), but output turns on until next high level signal.
- t2: Normal operation, outputs turn on.
- $t3\,:\,V_{\text{CC}}$ level drops to under voltage trip level. (UV $_{\text{CCT}})$
- t4: All low side outputs turn off in spite of control input condition.
- t5: FO outputs for tF0=40us (Min), but output is extended during Vcc keeps below UVccr.
- t6: Vcc level reaches UVccr.
- t7: Normal operation, outputs turn on.

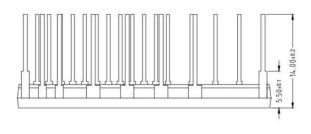
Over Temperature Protection Description




Figure 4. Over temperature protection


- t1: Normal operation, low side outputs turn on.
- t2: LVIC temperature exceeds over temperature trip level (OTt).
- t3: All low side outputs turn off in spite of control input condition.
- t4: FO outputs for t_{FO}=40 us (Min), but output is extended during LVIC temperature higher than OTt.
- t5: LVIC temperature drops to over temperature reset level.
- t6: Normal operation, low side outputs turn on by next high level signal.




Package dimension

DIP-25

Revision history

Date	Revision	Changes
2025-01-10	Rev 1.0	Release of the preliminary datasheet.

Disclaimer

PLEASE NOTE - Jiangsu JieJie Microelectronics Co., Ltd ("JJM") reserves the right to amend, correct, modify and enhance the product and/or this document at any time without prior notice. If you intend to purchase this product, please obtain the latest information available before placing your order. The sale of JJM products is governed by JJM's prevailing terms and conditions at the time of purchase and purchasers are solely responsible for the selection and use of the products with no liability on JJM's part to supply application assistance or customization. Purchase of JJM products does not grant the purchaser license, express or implied, to JJM's intellectual property. Any warranties provided with JJM products are null and void upon resale unless accompanied by the information set forth herein in its entirety. The JJM name and logo are registered trademarks of Jiangsu JieJie Microelectronics Co., Ltd. This document supersedes all previous versions. ©2025 JJM - All rights reserved